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Abstract

We discuss the general utility of filtered simulations at STAR and the filtering
framework currently implemented within the STAR software library. Particular at-
tention is paid to the current state of pp simulations, possible biases in the existing
methods, and the potential for filtering as a general solution.

1 Introduction

Simulation is a critical element of precision physics measurements. By studying the evolu-
tion of realistic physics events through full detector reconstruction, detector effects can be
characterized and entire physics analyses studied for potential biases and other flaws.

In practice, these realistic physics events are Monte Carlo samples generated from pro-
grams such as Pythia [1]. Drawn from differential cross sections, which from a probabilistic
perspective are really just probability distributions, these samples,

xi ∼ p (x) ∝ dnσ (xi)
dy1 . . . dyn

,

are used to approximate various expectations

f̄ =
∫
dx p (x) f (x) ≈

∑
i

f (xi)

such as histogram populations.
The detector reconstruction, commonly performed by Geant, is also inherently a Monte

Carlo approach where interactions between high energy particles and detector material are
sampled from previously measured interaction cross sections.

Readers unfamiliar with Monte Carlo techniques are highly encouraged to first consult
the excellent introductions in MacKay [2] and Bishop [3].
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Figure 1: Often Monte Carlo generators can efficiently sample only from a bulk distribution
(blue) when the desired physics lies within a much smaller region, here in the tail (red).

2 The Proverbial Needle in the Proverbial Haystack

When practicalities limit the phase space of a given physics process, however, efficient
generation of the desired Monte Carlo samples may not be possible. Consider, for example,
a Monte Carlo generator that can draw samples from only the full phase space of particular
physics process where as the desired physics is restricted to a small corner of phase space
(Figure 1).

Most of the computational resources in a naive simulation would be spent generating,
and then reconstructing, samples from the bulk of the phase space. Very few samples
relevant to the physics of interest would be produced.

By examining each sample before the computationally expensive detector reconstruc-
tion and rejecting those not satisfying the desired criteria, however, the generation of de-
sired samples can be made significantly more efficient. This additional rejection sampling
criteria, or filter, offers the potential for dramatically improved simulations.

2.1 Needles Defined By Nature

Often event generators do not offer sufficient customization of the final state. While Pythia
allows the selection of the hard interaction and certain restrictions to the partonic final
state, for example, the customization is not inclusive. In particular, the detailed structure
of hadronic showers is a stochastic process whose phase space cannot be limited without
violating the delicate correlations between the individual particles.

The introduction of a filter immediately after the event generation, however, allows for
specific showers to be isolated and continued through reconstruction. Samples rich in high
z pions or rare hadrons become a practical reality.
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2.2 Needles Defined By Measurements

Event phase space can be restricted even further by restricting properties of the recon-
structed final state, in particular the actual interactions of the final state with the sur-
rounding detectors. Data written to tape is fundamentally limited by triggering conditions
and other detector inefficiencies, and any physics simulation will contain extraneous events
that would never have made it to disk.

Introducing a filter with a reconstruction criteria allows these extraneous events to be
trimmed away and more resources spent on generating events relevant to the data. As the
reconstruction becomes more and more inefficient, this becomes a more and more powerful
technique.

Filtering by observed detector response is not just a means of improving simulation
statistics. A close examination of the current simulation methodology at STAR reveals a
dangerous vulnerability to sampling biases, and filtering is exactly the tool necessary for a
general solution.

2.2.1 Partitioning Phase Space

High energy physics cross sections feature dramatic variations in scale, for example falling
many orders of magnitude within the transverse momenta accessible at STAR. This im-
mense range makes comprehensive sampling inherently difficult: the majority of compu-
tational resources are spent drawing samples at low pT while the higher pT tails, and the
desired physics, are sparsely sampled.

In order to sample the tails more efficiently, the event phase space can be partitioned
and each partition sampled separately. Such a partitioning in Pythia is furnished with
the CKIN variables which restrict the kinematic phase space of the final state in the 2→ 2
hard interaction. STAR, for example, utilizes CKIN(3) and CKIN(4), which provide lower
and upper bounds on the transverse momentum of the final state partons and allow for
comprehensive sampling of higher pT physics.

Samples in the individual partitions must be weighted to ensure that each contributes
appropriately to the Monte Carlo expectations. For the Pythia scheme above, the weights
ensure that the integrated luminosities of each partition are equal. Consequently, the Monte
Carlo expectations become

f̄ =
∑

j

wj f̄j ,

where f̄j is the Monte Carlo expectation from the jth partition,

f̄j =
∑
ij

f
(
xij

)
,

and the weights are given by
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Figure 2: Partitioning phase space by partonic transverse momentum defines an auxiliary
distribution g (p̂T ) for importance sampling. Each partition is thoroughly sampled and
then weighted to conform to the true distribution p (p̂T ).

wj =
∫

dtLnominal∫
dtLj

wj =
∫

dtLnominal

Nj/σj
.

Formally, this procedure falls into a class of Monte Carlo techniques known as impor-
tance sampling [2, 3]. Instead of sampling directly from the desired distribution p (x),
samples are drawn from an auxiliary distribution g (x) (Fig 2) and the Monte Carlo esti-
mates are given by

f̄ =
∑

i

p (xi)
g (xi)

f (xi) .

Importance sampling proves particularly useful when sampling from the auxiliary dis-
tribution g (x) is much easier than sampling from p (x) itself.

2.2.2 The Problem With Importance Sampling

Importance sampling, however, is not without its weaknesses. In regions where the auxiliary
distribution does not cover the true distribution,

g (xi) < p (xi)
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the local contributions to the Monte Carlo estimates are dominated by a few highly
weighted events. Because the effective sample size is small, the resulting expectations
are prone to bias and the large weights only amplify the error. More technical discussions
are given in MacKay [2] and Bishop [3].

In the simple picture considered above (Fig 2) the weights appear to all be bounded
by unity with the importance sampling estimates sound, but a closer inspection of the
CKIN variables reveals a less appealing truth. The problem is that, while measurements
are defined in the collider frame, the CKIN variables are not.

When Pythia samples the final state of the 2 → 2 hard interaction, it does so from
distributions defined in the frame where the incident partons lie along the z axis with
equal momenta. The incident partons drawn independently from each proton, however,
will likely have different Bjorken x and hence unbalanced momenta. Moreover, initial state
radiation introduces nontrivial transverse momentum into the sytem. In general, then, the
initial partons will have to be boosted and rotated before Pythia can properly sample a
final state.

The phase space restrictions defined by the CKIN variables are imposed also in this
transformed, hard interaction frame. Consequently, the transverse momenta defining the
partitions is not the collider pT but rather the hard interaction p̂T .

Transforming back to the collider frame, the hard boundaries between the partitions in
p̂T become soft boundaries in pT (Fig 3a). These tails stretch across pT such that any given
pT bin contains contributions not only from the relative p̂T bin but also from neighboring
bins. Because of the steeply falling cross sections, the contributions of tails from low p̂T

samples are particularly significant (Fig 3b).
Note that additional effects, such as detector and reconstruction resolution, also induce

tails in the pT distributions. In practice, however, these are subdominant contributions.
Unfortunately, these low p̂T samples have been inadequately sampled, if sampled at

all, in STAR simulations. Because of the dramatic increase in cross section, generating
sufficient samples and passing each through the entire simulation chain is computationally
infeasible. Any allocation of finite resources results only in sparse, highly weighted, samples
and the resultant Monte Carlo estimates enter into the regime where importance sampling
breaks down.

A more efficient approach would avoid unnecessary reconstruction of events not ulti-
mately contributing to the physics, instead focusing on generating copious Pythia events
and reconstructing only those in the high pT tails (Fig 4). In other words, one needs a
filter.

3 Filtering

In order to avoid unnecessary reconstruction, a decision must be made to accept or reject
each event based on a desired signal in the final reconstructed event. Where would such a
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(a) (b)

Figure 3: (a) Tails induced from the boost and rotation between the hard scattering frame,
where the CKIN cuts (red) are applied, and the collider frame. (b) Cartoon demonstrating
the importance of tails when sampling from steeply falling cross sections. Significant con-
tributions to the 6 < pT < 9 reconstructed bin (magenta) come not only from the bulk of
the 6 < p̂T < 9 distribution but also the tail of the 4 < p̂T < 6 distribution (blue).

Figure 4: Sufficient sampling of a low p̂T sample (blue) relies on rejecting the bulk which
falls below the reconstruction threshold (here the dashed black line) in order to focus
resources on the tail falling above the threshold (green).
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Figure 5: The positions within the STAR simulation framework where a filtering decision
could be made. 1, 2, and 3 are implemented in the StMCFilter while 4 is implemented in
the StFilterMaker.

decision be made?
The STAR simulation chain begins with Starsim, where Pythia events are generated

and tracked through Geant one by one before being saved. The output of Starsim is then
input to the Big Full Chain, or BFC, where the Geant hits are organized into detector
energy depositions and event reconstruction such as TPC tracking is performed.

Interrupting Starsim and rejecting events immediately after Pythia would avoid both
computationally expensive Geant tracking and event reconstruction, conserving the most
resources. The Pythia event, however, is not equivalent to the final reconstructed event:
many particle decays are suppressed, for example, and particles have not yet showered in
the calorimeters. This discrepancy between the reconstructed event and the Pythia event
fundamentally limits the power of filtering at this point in the simulation chain.

Not until Geant tracking has been performed is the bulk of the reconstructed event
available as input to a filtering decision. Although the cost of tracking would be inescapable,
filtering here would still attenuate unnecessary event reconstruction in the BFC as well as
reducing the ultimate storage footprint.

A framework incorporating both approaches, a filter after Pythia and another after
Geant, would maximize the possible rejection and optimize the sampling of the tails.
The STAR filtering framework takes this inclusive approach (Fig 5), providing a flexible
platform for comprehensive filtering needs with two software components.

StMCFilter This C++ class interfaces directly with Starsim, allowing for the rejection
of events before they are saved to disk. Methods allow for events to be rejected
immediately after Pythia, immediately after the Pythia events are postioned into
the detector with the generation of an event vertex, and immediately after Geant.
The ability to access the vertex is particularly useful, for example, when limiting the
kinematics of the final state in the collider frame.

StFilterMaker This StMaker derived class is called from within the BFC, allowing events
to be rejected before expensive TPC tracking begins. The information available is
the same as the post-Geant decision of the StMCFilter, but the placement in the
BFC allows the StFilterMaker to take advantage of the detector slow simulators to
organize the profusion of Geant hits.
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3.1 The Fine Print

The ability to arbitrarily filter events provides the opportunity to not only avoid the sta-
tistical pitfalls of importance sampling, but also produce otherwise superior simulation
samples from fewer computational resources and less storage. Proper use of this extensive
filtering framework, however, must also consider new, often subtle, issues.

3.1.1 Bias

Given the definition of a reconstruction signal, a filter can be designed to reject events
not ultimately satisfying the reconstruction criteria. At the same time, however, the filter
should not reject events that would fulfill the criteria. Enough of these false biases can
dominate the importance sampling uncertainties and spoil the validity of the sample.

What bias is considered acceptable? Consider the weights of a given sample,

wj =
∫
dtLnom∫
dtLj

wj =
∫
dtLnom

Nj/σj

wj =
(∫

dtLnom

)
σj

Nj
.

The uncertainty in the weights is

δwi ≈
(∫

dtLnom

)
δ
σj

Nj

δwi ≈
(∫

dtLnom

)√√√√( 1
Nj

δσj

)2

+

(
σj

N2
j

δNj

)2

δwi ≈
(∫

dtLnom

)
σj

Nj

√(
δσj

σj

)2

+
(
δNj

Nj

)2

δwi ≈
∫
dtLnom∫
dtLi

√(
δσj

σj

)2

+
(
δNj

Nj

)2

δwi ≈ wi

√(
δσj

σj

)2

+
(
δNj

Nj

)2

or
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δwi

wi
≈

√(
δσj

σj

)2

+
(
δNj

Nj

)2

.

The cross section σj is itself a Monte Carlo estimate from Pythia, with a counting
uncertainty

δσj

σj
≈ 1√

Ngen

,

where Ngen is the number of Pythia events generated in the calculation of the cross section
[1]. Practical considerations1 limit Ngen to O

(
106
)
, giving the cross section uncertainty

δσj

σj
≈ 10−3

Any false rejections contribute directly to δNj , and if they are to be considered negligible
they must satisfy

δN

N
� δσ

σ

δN

N
� 10−3

δN � 10−3N

Vetting the bias of a filter is then accomplished by generating thousands of events and
ensuring that significantly less than 10−3, 10−4 is a good target, are falsely rejected.

Note that any validation holds only for the exact settings used in the test. If settings
relevant to detector reconstruction, such as gains, are changed, as is done in systematic
studies, then the filtered sample is not guaranteed to remain valid as the changes can
decrease the underlying filter acceptance and increased false rejections along with it. Only
when bias tests are done with settings that minimize the filter acceptance will tuning be
acceptable for all relevant settings.

3.1.2 Truth vs. Reconstructed Truth

Care must be taken when implementing filtering simulations utilizing any criteria based on
underlying truth. Because the same requirement cannot be made of the raw data, these
simulations cannot be compared to the data until significant analysis has been performed.
Even then, limitations in the analysis may prevent the comparison from being exact.

1Generating 106 Pythia events takes a few hours. Improving the cross section uncertainty by another
order of magnitude would require 108 events and over two weeks.
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3.1.3 Signal vs. Reconstructed Signal

When filtering by detector response, the acceptance criteria are defined entirely in terms
of a reconstructed signal and, consequently, physics events that will not reconstruct are
rejected the same as background. These rejected events, however, are critical for accurate
calculation of reconstruction efficiencies. If the filtered sample will be used for such calcu-
lations then the true physics, in other words the Pythia event record, must be saved for
any rejected events (given the sparsity of the Pythia record, the requisite disk space is
negligible).

Design of a filter must carefully consider the ultimate physics, ensuring that all physics
events will either pass the filter (particularly amenable to post-Pythia filtering) or have
their event record saved (more appropriate for post-Geant filters, most easily implemented
in a StFilterMaker).

3.1.4 Timing

The cost of conventional simulation is dominated by Geant tracking and the BFC – the
expense of generating of a Pythia is negligible in comparison. Knowing the time necessary
to run a single event through the simulation chain will then entirely determine the structure
of a practical simulation request. When filtering is introduced, however, the Pythia can
become significant.

Well designed filters acting immediately after Pythia can rejects hundreds of thousands
of Pythia events before an acceptable event is passed to the rest of the simulation chain.
The cost of generating a single effective Pythia event dramatically increases, the resources
needed for the rest of the chain become negligible, and the entire structure of the request
must be reconsidered. Powerful post-Geant filters, where the cost of tracking each rejected
event quickly integrates, are even worse.

When filtering is involved, naive simulation requests can lead to very poor allocation
of resources. When the filter acceptance rate is low, generation of a single event can easily
exceed tens of minutes and a conventional job requiring hundreds of events would run for
days. Consequently, careful timing studies must be done for any filtered request to ensure
feasibility.

3.1.5 Storing Log Files

Lastly, the log files from each simulation jobs must be considered as critical as the simula-
tion itself. Only here can the luminosity of each sample, and hence the necessary weighting,
be calculated.
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3.2 So You Want To Make A Filter. . .

In order to illustrate the finer details important when implementing a filter, consider the
following example. The goal will be to implement a simple filter for a prompt photon
simulations.

Step 1 - Define Reconstruction Signal

Expecting prompt photons to leave spatially isolated calorimeter depositions, the recon-
struction signal will be defined as any event with a 3× 3 tower cluster in the BEMC with
total ET > 6GeV. In addition, the event must satisfy the l2BemcGamma trigger emulator.

Step 2 - Design Filters

Filtering will consist of two decisions, one after a vertex has been generated (immediately
before Geant) and the second in the BFC. The first mocks up the tower cluster by summing
true particle energy in an η-φ cone just large enough to contain the 9 towers. Events passing
the filter require a cone with true ET > E1. Provided that E1 < 6 GeV, which is already
necessary to avoid bias, all true prompt photon events will immediately pass this filter.

The latter performs a proper 3×3 cluster on the Geant energy depositions and requires
at least one cluster with ET > E2. When generating true prompt photon events, the filter
also saves the Pythia event record of each incident event.

Step 3 - Tune Filters

Both decisions are tuned by setting E1 and E2 as close to possible to 6 GeV without
inducing significant bias (Table 3.2).

When emulating a trigger decision, ADCs must be mocked up by converting from the
deposited energy (corrected for sampling fraction) with the gains and, because of nontrivial
uncertainty in the determination of the these gains, the actual values will be varied for final
systematic studies. In the BEMC convention a small gain yields a larger ADC, a higher
probability of passing the trigger, and larger filter acceptance. Consequently, tunes are
done using the smallest gain employed in the final systematic study.

Timing Studies

Given the final tune, additional tests are run to determine the resources necessary for each
p̂T bin (Table 3.2). These studies finally enable the design of a feasible simulation request.

4 Conclusion

The STAR filtering framework, StMCFilter and StFilterMaker, enables the filtering of
events at each each step of the simulation chain based on arbitrary criteria. When carefully
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applied, this framework allows for the efficient generation of large simulation samples safe
from the statistical bias inherent in conventional sampling.

5 Filtering History

From its inception, Starsim has featured a single particle filter allowing for simple filtering
requirements. The first extension, implemented as modifications of the Pythia event
generation code itself, was introduced by Qinghua Xu and enabled more complex filtering
decisions, although early uses were limited to filtering events by their underlying truth.
Jan Balewski first studied the potential gains from this framework.

Inspired by artifacts in existing simulations, Michael Betancourt discovered the sub-
tleties of the CKIN cuts, formalized their use from an importance sampling perspective,
and introduced filtering criteria based on reconstructed characteristics in order to avoid
the statistical biases. Realizing the need for further flexibility, he also designed the BFC
filtering framework.

Victor Perevoztchikov generalized the original Pythia filter with the StMCFilter, cre-
ating a more systematic and flexible framework applicable to any event generator imple-
mented in Starsim.

The STAR software team, particularly Jérôme Lauret and Jason Webb, offered invalu-
able support throughout the evolution of the filtering framework.

References

[1] Torbjörn Sjörstrand, Stephen Mrenna, and Peter Skands Pythia 6.4 Physics and Man-
ual, http://home.thep.lu.se/~torbjorn/Pythia.html, March, 2006

[2] MacKay, D. J. C. (2003) Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, New York

[3] Bishop, C.M. (2007) Pattern Classification and Machine Learning. Springer, New York

12



T
ab

le
1:

H
yp

ot
he

ti
ca

lfi
lt

er
tu

ni
ng

re
su

lt
s

–
th

e
nu

m
be

rs
ar

e
fo

r
ill

us
tr

at
iv

e
pu

rp
os

es
on

ly
an

d
sh

ou
ld

no
t

be
us

ed
to

ju
dg

e
re

al
fil

te
r

im
pl

em
en

ta
ti

on
s.

T
he

ta
bu

la
r

pr
es

en
ta

ti
on

is
pa

rt
ic

ul
ar

ly
us

ef
ul

w
he

n
pr

op
os

in
g

th
at

th
e

fil
te

r
be

us
ed

in
an

offi
ci

al
si

m
ul

at
io

n
re

qu
es

t.

T
un

in
g

C
K
I
N
(
3
)

C
K
I
N
(
4
)

S
t
M
C
F
i
l
t
e
r

S
t
M
C
F
i
l
t
e
r

S
t
F
i
l
t
e
r
M
a
k
e
r

S
t
F
i
l
t
e
r
M
a
k
e
r

T
ot

al
(G

eV
)

(G
eV

)
A

cc
ep

ta
nc

e
B

ia
s

A
cc

ep
ta

nc
e

B
ia

s
A

cc
ep

ta
nc

e
2

3.
5

0.
00

10
%

3/
50

00
0

13
.4

%
1/

50
00

0
0.

00
01

3
%

3.
5

4.
5

0.
01

6%
1/

50
00

0
16

.5
%

0/
50

00
0

0.
00

26
%

··
·

··
·

··
·

··
·

··
·

··
·

··
·

25
40

78
.3

%
0/

50
00

0
57

.2
1%

0/
50

00
0

44
.8

%
40

∞
81

.7
%

0/
50

00
0

85
.2

1%
0/

50
00

0
69

.7
%

T
im

in
g

C
K
I
N
(
3
)

C
K
I
N
(
4
)

T
im

e/
E

ve
nt

T
im

e/
E

ve
nt

Si
ze

/E
ve

nt
(G

eV
)

(G
eV

)
(s

)
(h

ou
rs

)
(G

B
)

2
3.

5
44

6
0.

12
0.

00
1

3.
5

4.
5

28
9

0.
08

0.
00

1
··
·

··
·

··
·

··
·

··
·

25
40

14
4

0.
04

0.
00

1
40

∞
58

0.
02

0.
00

1

F
in

al
R

eq
ue

st

C
K
I
N
(
3
)

C
K
I
N
(
4
)

C
ro

ss
Se

ct
io

n
R

aw
E

ve
nt

s
F

ilt
er

ed
N

um
be

r
E

ve
nt

s/
F

ile
T

im
e/

F
ile

Si
ze

/F
ile

(G
eV

)
(G

eV
)

(p
b)

Fo
r

1
pb
−

1
E

ve
nt

s
of

F
ile

s
(h

ou
rs

)
(G

B
)

2
3.

5
8,

99
2,

00
0,

00
0

89
92

00
00

00
11

86
0

36
0

33
4

0.
03

3
3.

5
4.

5
61

4,
10

0,
00

0
61

4,
10

0,
00

0
15

91
7

31
8

50
4

0.
05

0
··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

25
40

10
,6

10
10

,6
10

47
54

48
10

0
4

0.
10

0
40

∞
12

6.
80

12
7

89
1

20
0

4
0.

20
0

13


